

DNx-SL-504/
DNx-SL-504-801

—
User Manual

4-Channel RS-232 or RS-422/423/485 (serial port) boards

for the PowerDNA Cube and RACK series chassis

Support for Synchronous Serial Data Communication
protocols (SDLC & HDLC protocols)

May 2020

PN Man-DNx-SL-504

© Copyright 1998-2020 United Electronic Industries, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
by any means, electronic, mechanical, by photocopying, recording, or otherwise without prior written
permission.

Information furnished in this manual is believed to be accurate and reliable. However, no responsibility
is assumed for its use, or for any infringement of patents or other rights of third parties that may result
from its use.

All product names listed are trademarks or trade names of their respective companies.

See the UEI website for complete terms and conditions of sale:

http://www.ueidaq.com/cms/terms-and-conditions/

Contacting United Electronic Industries

Mailing Address:

27 Renmar Avenue
Walpole, MA 02081
U.S.A.

For a list of our distributors and partners in the US and around the world, please contact our support team:

Support:

Telephone: (508) 921-4600
Fax: (508) 668-2350

Also see the FAQs and online “Live Help” feature on our web site.

Internet Support:

Support: support@ueidaq.com
Web-Site: www.ueidaq.com
FTP Site: ftp://ftp.ueidaq.com

Product Disclaimer:

WARNING!

DO NOT USE PRODUCTS SOLD BY UNITED ELECTRONIC INDUSTRIES, INC. AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS.

Products sold by United Electronic Industries, Inc. are not authorized for use as critical components in
life support devices or systems. A critical component is any component of a life support device or
system whose failure to perform can be reasonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness. Any attempt to purchase any United Electronic
Industries, Inc. product for that purpose is null and void and United Electronic Industries Inc. accepts
no liability whatsoever in contract, tort, or otherwise whether or not resulting from our or our
employees' negligence or failure to detect an improper purchase.

Specifications in this document are subject to change without notice. Check with UEI for
current status.

http://www.ueidaq.com

DNx-SL-504 Synchronous Serial Line Communication Board i
Table of Contents
Table of Contents
Chapter 1 Introduction . 1

1.1 Organization of Manual. 1

1.2 SL-504 Interface Board Overview. 3
1.2.1 Standards and Protocols . 3
1.2.2 Baud Rates & Bit Configuration . 3
1.2.3 Network Topologies . 3
1.2.4 Electrical & Environmental Specifications. 3
1.2.5 Software Support . 3

1.3 Features . 4

1.4 Indicators . 4

1.5 Specification . 5

1.6 Serial Communication. 6
1.6.1 Standards and Protocols . 6
1.6.2 The Physical Interface . 7
1.6.3 HDLC/SDLC Data-link Protocols . 10

1.7 Architecture. 11
1.7.1 RS-232/485 Transceiver . 12
1.7.2 Universal Serial Controller . 12

1.8 Wiring & Connectors (pinout) . 12
1.8.1 2-wire Wiring, Synchronous . 13

Chapter 2 Programming with the High-Level API . 14

2.1 About the High-level Framework. 14

2.2 Creating a Session . 14

2.3 Configuring the Resource String. 15
2.3.1 Configuring the HDLC Port . 15

2.4 Configuring the Timing . 17

2.5 Reading Data . 17

2.6 Writing Data . 18

2.7 Cleaning-up the Session. 18

Chapter 3 Programming with the Low-Level API . 19

3.1 About the Low-level API . 19

3.2 Low-level Functions . 19

3.3 Low-level Programming Techniques. 20

3.4 HDLC/SDLC Protocol Overview . 20

3.5 Enabling Ports. 21

3.6 Setting the Configuration . 21

3.7 Configuring 2-wire, Half-duplex Mode (SL-504-801) . 25

3.8 Configuring Tx and Rx Clocking . 25
3.8.1 Clock Source Descriptions. 26
May 2020 www.ueidaq.com
508.921.4600

© Copyright 2020
United Electronic Industries, Inc.

DNx-SL-504 Synchronous Serial Line Communication Board ii
Table of Contents
3.9 Sending and Receiving HDLC Frames . 26

3.10 Reading the Link Status . 27

3.11 Aborting Transmission . 30
May 2020 www.ueidaq.com
508.921.4600

© Copyright 2020
United Electronic Industries, Inc.

DNx-SL-504 Synchronous Serial Line Communication Board iii
List of Figures

May 2020 www.ueidaq.com
508.921.4600

© Copyright 2020
United Electronic Industries, Inc.

List of Figures
1-1 DNA-SL-504 Serial Board ...5
1-2 The OSI Model ..6
1-3 RS-232 Topology...7
1-4 Four-wire Twisted-pair Full-duplex Network ..8
1-5 Two-wire Twisted-pair Half-duplex Network (SL-504-801 Board Version Only)............9
1-6 Diagram of UART Data Frames for RS-232 and RS-485..9
1-7 Logic Block Diagram: DNA/DNR-SL-504 Overview...11
1-8 DNx-SL-504 Connection Diagram ...13
1-9 Two-wire Twisted-pair Half-duplex Sync Network (SL-504-801)13
A-1 Pinout and Photo of DNA-STP-62 Screw Terminal Panel ...31

DNx-SL-504 Synchronous Serial Line Communication Board
Chapter 1 1

Introduction
Chapter 1 Introduction

This document outlines the feature set and use of the DNx-SL-504 boards for
synchronous serial-line communication applications.

The DNx-SL-504-1 board version supports RS-232, RS-422, and RS-485
recommended standards for full-duplex serial communication.

The DNx-SL-504-801 board version supports RS-232, RS-422, and RS-485
recommended standards for both full-duplex serial communication and RS-485/
422 two-wire, half-duplex operation.

The following sections are provided in this chapter:

• Organization of Manual (Section 1.1)

• SL-504 Interface Board Overview (Section 1.2)

• Features (Section 1.3)

• Indicators (Section 1.4)

• Specification (Section 1.5)

• Serial Communication (Section 1.6)

• Architecture (Section 1.7)

• Wiring & Connectors (pinout) (Section 1.8)

1.1 Organization
of Manual

This SL-504 User Manual is organized as follows:

• Introduction
This section provides an overview of the SL-504 synchronous serial line
communication interface features, device architecture, and connectivity.

• Programming with the High-Level API
This chapter provides an overview of the how to create a session,
configure the session, and format relevant data with the Framework API.

• Programming with the Low-Level API
This chapter describes low-level API commands for configuring and
using the SL-504 series board for serial operating modes.

• Appendix A - Accessories
This appendix provides a list of accessories available for use with the
SL-504 board.

• Index
This is an alphabetical listing of the topics covered in this manual.
May 2020 www.ueidaq.com
508.921.4600

© Copyright 2020
United Electronic Industries, Inc.

DNx-SL-504 Synchronous Serial Line Communication Board
Chapter 1 2

Introduction
Manual Conventions
To help you get the most out of this manual and our products, please note that
we use the following conventions:

Tips are designed to highlight quick ways to get the job done or to reveal
good ideas you might not discover on your own.

NOTE: Notes alert you to important information.

CAUTION! Caution advises you of precautions to take to avoid injury, data loss,
and damage to your boards or a system crash.

Text formatted in bold typeface generally represents text that should be entered
verbatim. For instance, it can represent a command, as in the following
example: “You can instruct users how to run setup using a command such as
setup.exe.”

Bold typeface will also represent field or button names, as in “Click Scan
Network.”

Text formatted in fixed typeface generally represents source code or other text
that should be entered verbatim into the source code, initialization, or other file.

Examples of Manual Conventions

Before plugging any I/O connector into the Cube or RACKtangle, be
sure to remove power from all field wiring. Failure to do so may
cause severe damage to the equipment.

Usage of Terms

Throughout this manual, the term “Cube” refers to either a PowerDNA Cube
product or to a PowerDNR RACKtanglerack mounted system, whichever is
applicable. The term DNR is a specific reference to the RACKtangle, DNA to the
PowerDNA I/O Cube, and DNx to refer to both.
May 2020 www.ueidaq.com
508.921.4600

© Copyright 2020
United Electronic Industries, Inc.

DNx-SL-504 Synchronous Serial Line Communication Board
Chapter 1 3

Introduction
1.2 SL-504
Interface
Board
Overview

The DNx-SL-504 is a 4-port interface board for synchronous serial
communications for the Cube and RACK series chassis.

DNA-SL-504, DNR-SL-504, and DNF-SL-504 boards are compatible with the
UEI Cube, RACKtangle, and FLATRACK chassis respectively. These board
versions are electronically identical except for the mounting hardware. The DNA
version is designed to stack in a Cube chassis. The DNR/F versions are
designed to plug into the backplane of a RACK chassis.

1.2.1 Standards and
Protocols

Each port on the SL-504 is independently configurable as RS-232, RS-485, RS-
422/423 set for synchronous communications. Ports are fully isolated from each
other as well as from the Cube or RACK chassis.

The DNx-SL-504 is based on the Zilog Z16C32 serial controller chip and
supports synchronous serial protocols including high-level data link control
(HDLC) and synchronous data link control (SDLC). The HDLC/SDLC interface
provides full access to serial frames, which allows software to determine how to
handle retries. The RS-485/422 implementation provides transmit and receive
data, sync and clock interfaces. Implementations can also support CTS and
DCD signals.

1.2.2 Baud Rates &
Bit
Configuration

The maximum transfer rate in RS-485/422 and RS-232 modes are 4 Mbaud and
230 kbaud respectively.

The on-board UART supports 5, 6, 7, or 8 data bits, plus optional even or odd
parity. The transmitters will also supply 1, 2, or fractional stop bits per character
and can provide a break output at any time.

1.2.3 Network
Topologies

The DNx-SL-504 boards are compatible with RS-232 point-to-point or RS-485
network applications. The ports are driven by the Exar SP506CM-L series
drivers and provide a wide variety of I/O configurations.

1.2.4 Electrical &
Environmental
Specifications

As with all UEI PowerDNA boards, the DNx-SL-504 can be operated in harsh
environments and has been tested at 5g vibration, 50g shock, -40 to +85°C
temperature, and altitudes up to 70,000 feet. Each board provides 350 Vrms
Isolation between channels and also between the board and its enclosure or any
other installed boards as well as electro-shock-discharge (ESD) isolation.

1.2.5 Software
Support

The DNx-SL-504 is supported by the UEIDAQ Framework providing a simple
and complete software interface to all popular Windows programming
languages and data acquisition/control application packages, such as LabVIEW,
MATLAB/Simulink, or any application that supports ActiveX or OPC servers.
Support is also provided for all popular non-Windows operating systems
including Linux, VXworks, QNX, RTX, INtime and more.
May 2020 www.ueidaq.com
508.921.4600

© Copyright 2020
United Electronic Industries, Inc.

DNx-SL-504 Synchronous Serial Line Communication Board
Chapter 1 4

Introduction
1.3 Features The features of the DNx-SL-504 are listed below:

• Four (4) independent serial communication ports

• Each port software-configurable as RS-232 or RS-422/423/485

• Completely independent bit rate settings for every port

• Compatible with RS-422 networks when used in RS-485 mode

• Full-duplex support for RS-422/485 with both SL-504-1 and SL-504-801
board versions

• Two-wire, half-duplex support for RS-422/485 with the SL-504-801
board version

• Supports HDLC/SDLC synchronous communication protocols

• 350V isolation between ports, ports and circuitry; 15kV ESD

• Tested to withstand 5g vibration, 50g shock, -40 to +85°C temperatures,
and altitudes up to 70,000 ft or 21,000 meters.

• Weight of 136 g or 4.79 oz for DNA-SL-504; 817 g or 28.8 oz with PPC5.

• UEI Framework Software API may be used with all popular Windows
programming languages and most real time operating systems such as
RT Linux, RTX, or QNX and graphical applications such as LabVIEW,
MATLAB, and any application supporting ActiveX or OPC.

1.4 Indicators The DNx-SL-504 indicators are described in Table 1-1 and illustrated in Figure
1-1.

Table 1-1 SL-504 Indicators

LED Name Description

RDY Indicates board is powered up and operational

STS Indicates which mode the board is running in:

• OFF: Configuration mode, (e.g., configuring channels)
• ON: Operation mode
May 2020 www.ueidaq.com
508.921.4600

© Copyright 2020
United Electronic Industries, Inc.

DNx-SL-504 Synchronous Serial Line Communication Board
Chapter 1 5

Introduction
Figure 1-1 DNA-SL-504 Serial Board

1.5 Specification The technical specification for the SL-504 is provided in the table below:

Table 1-2 . DNx-SL-504 Technical Specifications

DB-62 (female)
62-pin I/O connector

RDY LED
 STS LED

DNA bus
connector

Port Specifications
Number ports 4, independently configurable
UART type Zilog Z16C32
Interface types RS-232, RS-422/423, RS-485
Protocols HDLC, SDLC
FIFOs 32byte, input and output (per port)
Baud rate generator Programmable, 1.2 kbaud to 4 Mbaud
RS-232 specifications
RS-232 Synchronous 0 kbaud
RS-232 Signals Tx, TxCLK Out, Rx, RxCLK In, CTS, Sync, DCD
RS-485/422 specifications
RS-485/422 Synchronous 4 Mbaud
RS-485/422 Signals Tx+, Tx-, TxCLK+, TxCLK-, RX+, RX-, RxCLK+,

RxCLK- CTS+. CTS-, DCD+, DCD-
General Specifications
Isolation 350 V port to port;
ESD protection 15 kV
Power Consumption 2-5W (RS-485 mode with max current drive)
Operating Temperature Tested -40 to +65 °C
Operating Humidity 0 - 95%, non-condensing
Vibration IEC 60068-2-6
 IEC 60068-2-64

5 g, 10-500 Hz, sinusoidal
5 g (rms), 10-500 Hz, broad-band random

Shock IEC 60068-2-27 50 g, 3 ms half sine, 18 shocks @ 6 orientations
30 g, 11 ms half sine, 18 shocks @ 6 orientations

MTBF 290,000 hours
May 2020 www.ueidaq.com
508.921.4600

© Copyright 2020
United Electronic Industries, Inc.

DNx-SL-504 Synchronous Serial Line Communication Board
Chapter 1 6

Introduction
1.6 Serial
Communication

This serial communication section provides an overview for the SL-504
supported recommended standards and protocols and is intended as a
summary for the software programming chapters.

Refer to Chapter 2 for programming specifics using the high-level framework
API, and Chapter 3 for programming specifics using the low-level API.

1.6.1 Standards and
Protocols

The Open Systems Interconnection (OSI) model is a 7-layer conceptual model
for standardizing communication, among computing systems and/or over a
network.

The following is a list of standards and protocols the SL-504 can implement (see
Figure 1-2 for an overview of the OSI model):

• Layer 1 is the Physical layer defining the hardware connection between
sender and receiver. This layer defines the standard for transporting raw bits,
rather than logical data.
The SL-504 can implement RS-232, RS-422, or RS-485 standards.
See Section 1.6.2 for a description of this hardware implementation.

• Layer 2 is the Data-Link Layer. The data-link layer is structured into frames of
logical data that transfer between sender and receivers. Layer 2 may detect
errors experienced on Layer 1 and correct them.
The SL-504 implements bit-oriented synchronous protocols, HDLC or SDLC.
See Section 1.6.3 for a description of the Data-Link layer implementation.

NOTE: To allow flexibility when implementing any HDLC or SDLC dialect, the
SL-504 only handles time-critical frame reception and transmission
implementation of the data-link protocol. Users can choose how to
handle the control implementation of the data-link protocol in their user
application.

• Layers 3 to 7, when necessary, are implemented by the user application.

Figure 1-2 The OSI Model

RS-232, RS-422, RS-485

Layer 2: Data-Link Synchronous HDLC, SDLC

Layers 3 to 7

Layer 1: Physical

Network to Application Layers
are determined by user code
May 2020 www.ueidaq.com
508.921.4600

© Copyright 2020
United Electronic Industries, Inc.

DNx-SL-504 Synchronous Serial Line Communication Board
Chapter 1 7

Introduction
1.6.2 The Physical
Interface

Each of the four serial ports on the SL-504 boards can be configured
independently to communicate using the RS-232, RS-422, and RS-485
standard. Port configuration is software programmable.

The physical layer offers the following services, provided by SL-504 hardware:

• Electrical interface

• Receiver/transmitter state in 4-wire (SL-504-1 or SL-504-801) bus
topology or 2-wire (SL-504-801) topology.

• Line coding

• Bit-by-bit synchronized delivery

1.6.2.1 RS-232
Standard

RS-232 is a physical layer electrical specification that requires three wires (RxD,
TxD, and common ground wires) for single-ended signaling. RS-232 uses
bipolar voltages, (e.g, ±5V, ±10V), to provide a bidirectional, full-duplex, serial
connection from 1 transmitter to 1 receiver (point-to-point, most commonly). The
EIA/TIA RS-232-C (1969) standard recommends distances of less than 50 feet
at signaling rates below 19200 baud.

Figure 1-3 RS-232 Topology

1.6.2.2 RS-422
Standard

RS-422 is a physical layer electrical specification designating four wires (one
twisted wire pair for Rx+/Rx- and one for Tx+/Tx-) for balanced differential
signaling. RS-422 uses voltages not exceeding ±7V, to provide a unidirectional,
full-duplex, serial connection from 1 transmitter to up to 10 receivers (multi-drop
topology). The voltage difference between the two +/- wires represents the
signal value, rather than the voltage level of just one wire. This eliminates a
significant amount of noise in electrically noisy environments and permits higher
data rates and cable lengths for RS-422 than RS-232.

1.6.2.3 RS-485
Standard

RS-485 is a physical layer electrical specification designating two wires (or 3, 4)
for balanced differential signaling. RS-485 uses voltage differences of ±2.2V
spanning over a common mode range of -7V to +21V, to provide a bidirectional
serial connection between 32 transmitters and 32 receivers (multi-point).

See Figure 1-4 for an example 4-wire RS-485 system using two twisted-pair
connections (transmit/receive pairs) together on either the SL-504-1 or SL-504-
801 board versions.

See Figure 1-5 for an example 2-wire, half-duplex RS-485 system using one
twisted wire pair. The SL-504 supports two-wire RS-485 systems with the SL-
504-801 board version.

RS-232 Device
Port 0

TxD

RxD

GND

RS-232 Device

RxD

TxD

GND
May 2020 www.ueidaq.com
508.921.4600

© Copyright 2020
United Electronic Industries, Inc.

DNx-SL-504 Synchronous Serial Line Communication Board
Chapter 1 8

Introduction
1.6.2.4 Applications
and Network
Topologies

RS-232 was defined as an interface between computers, devices, and terminals
with modems, all of which are short links. Noise is a problem as baud rate and
line length increase; longer distances are possible using low capacitance cable
to reduce crosstalk, but the DTE and DCE share a common ground which can
degrade between different power supplies. The signal can also become skewed
or absorb noise from the external environment, becoming unreadable.

RS-422 master control units were designed to send commands in parallel to as
many as ten slave receivers (yet the slave devices do not transmit by them-
selves in a multi-drop topology). In practice the RS-422 electrical interface is
used in point-to-point topology with only two terminals and can be substituted
for, or carry signals from, RS-232 links over long distances by using a converter.

RS-485 was designed to allow multi-point communication where 32 devices can
both send and receive (not just receive, as with multi-drop). The user designs
the access protocol, which usually involves one “master” device that coordinates
one slave device (of 31) to transmit at a time.

Figure 1-4 shows the 4-wire topology for RS-422/485 operation. Figure 1-5
shows the 2-wire topology for RS-422/485 operation for the SL-504-801.

Figure 1-4 Four-wire Twisted-pair Full-duplex Network

TxD(a)

TxD(b)

RxD(a)

RxD(b)

TxC(a)
TxC(b)
RxC(a)
RxC(b)

GND

Clock Lines
For use with
synchronous

transmissions

RxClk(a)
RxClk(b)
TxClk(a)
TxClk(b)
GND

R
xC

lk
(a

)
R

xC
lk

(b
)

Tx
C

lk
(a

)
Tx

C
lk

(b
)

G
N

D
Slave 1

Rx
Tx

R
xC

lk
(a

)
R

xC
lk

(b
)

Tx
C

lk
(a

)
Tx

C
lk

(b
)

G
N

D

Slave 2

Rx
Tx

Slave nMaster (i.e., SL-504 Ch0)
...

120

12
0

RxD

TxD
May 2020 www.ueidaq.com
508.921.4600

© Copyright 2020
United Electronic Industries, Inc.

DNx-SL-504 Synchronous Serial Line Communication Board
Chapter 1 9

Introduction
Figure 1-5 Two-wire Twisted-pair Half-duplex Network (SL-504-801
Board Version Only)

NOTE: 2-wire configuration is supported with the SL-504-801 board version
only. SL-504-801 requires a configuration setting to use half-duplex
mode, which tristates the TX driver when the port is receiving. Refer to
Section 3.7 for 2-wire configuration programming details using the low-
level API.

1.6.2.5 Data Frame
Signaling

Figure 1-6 below shows UART data frame (top) representations for both single-
ended ±5V signaling in RS-232 and twisted-pair RS-422/485.

Figure 1-6 Diagram of UART Data Frames for RS-232 and RS-485

TxD(a)

TxD(b)

RxD(a)

RxD(b)

TxC(a)
TxC(b)
RxC(a)
RxC(b)

GND

Clock Lines
For use with
synchronous

transmissions

RxClk(a)
RxClk(b)
TxClk(a)
TxClk(b)
GND

R
xC

lk
(a

)
R

xC
lk

(b
)

Tx
C

lk
(a

)
Tx

C
lk

(b
)

G
N

D

Slave 1

Rx
Tx

R
xC

lk
(a

)
R

xC
lk

(b
)

Tx
C

lk
(a

)
Tx

C
lk

(b
)

G
N

D

Slave 2

Rx
Tx

Slave nMaster
(i.e., SL-504-801 Ch0)

...

120

12
0

RxD

TxD

Data

RS-232

RS-485

S 0 1 2 3 4 5 6 7 P S IdleIdle

1 0 0 1 1 0 1 1 0

+5V

-5V

5V

0V

5V

0V

Example of UART Data Frame (0x 9 8 Data Bits, Odd Parity, 1 Stop Bit)

TX+

TX-
May 2020 www.ueidaq.com
508.921.4600

© Copyright 2020
United Electronic Industries, Inc.

DNx-SL-504 Synchronous Serial Line Communication Board
Chapter 1 10

Introduction
1.6.3 HDLC/SDLC
Data-link
Protocols

The SL-504 boards provide synchronous serial communication and support
HDLC and SDLC bit-oriented data-link protocols.

Synchronous serial communication uses a separate clock signal to indicate that
a new bit is ready on the data wire. Data characters of any number of bits can be
grouped into frames (blocks of data) to be sent onto the serial hardware.

1.6.3.1 SDLC/HDLC
Frame
Overview

SDLC, and the extended HDLC, are bit-oriented data-link protocols. Various
implementations of SDLC/HDLC conform to different dialects, but the
information below is generally supported by most.

Both HDLC/SDLC organize bits into blocks of data (frames) that align to the
following format:

• Flag: the start and end of the frame is marked with a flag, or bit sequence
‘01111110’ (0x7E hex), which acts as a frame delimiter. The flag is a unique
sequence of bits guaranteed (using bit stuffing) not to be seen inside a frame.

• Address: the SDLC identifier of the secondary station(s) (individual, group,
or broadcast). A primary is either a communication source or a destination,
eliminating the need to include the primary address.

• Control: dependent on the type of frame:

• Information Frame (user data)
I-frames transport user data from the network layer, combined with flow
and error control information. I-frames include a poll/final (P/F) bit, which
is for performing flow and error control.

• Supervisory Frame (control)
An S-frame is used for flow and error control when no data is sent. They
can request, re-request or suspend transmission, and acknowledge
receipt of I-frames.

• Unnumbered Frame (miscellaneous)
U-frames are used for link management (e.g. initializing secondaries),
status, test, and for transferring user data (in an information field).

• Data: logical data of variable-length (usually sent in multiples of 8 bits).

• Frame Check Sequence (FCS): a 32- or 16-bit CCITT-CRC computed over
the Address, Control, and Information fields intended to detect errors in
transmission. The probability of an undetected error occurring increases with
data length, so the FCS implicitly limits the practical size of the frame.

Flag Address Control Data FCS Flag

8 bits 8 or more bits 8 or 16 bits Variable length
0 or more bits

16 or 32 bits 8 bits
May 2020 www.ueidaq.com
508.921.4600

© Copyright 2020
United Electronic Industries, Inc.

DNx-SL-504 Synchronous Serial Line Communication Board
Chapter 1 11

Introduction

When no frames are being transmitted over a simplex or full-duplex sync link, a
frame delimiter is continuously transmitted on the link. Using the standard NRZI
encoding from bits to line levels, this generates one of two continuous
waveforms, depending on the initial state, as shown below:

Flags are used by a receiver to synchronize its clock using a phase-locked loop.
For half-duplex or multi-drop communication, a receiver will see continuous
idling 1-bits in the inter-frame period when no transmitter is active.

Within any frame, a sequence of 7 or more 1-bits identifies an ‘Abort’ code.

1.7 Architecture The architecture of the DNx-SL-504 is illustrated in the block diagram shown in
Figure 1-7.

Figure 1-7 Logic Block Diagram: DNA/DNR-SL-504 Overview

The DNx-SL-504 comprises four serial ports designed for synchronized serial
communication. Each port has a programmable physical signaling interface,
baud rate, signal encoding, clocking scheme, and HDLC-specific format
parameters including idle character, filtering, preamble size, preamble type, and
user-configurable CRC.

0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0

RS-232/485
Transceiver

RS-232/485
Transceiver

RS-232/485
Transceiver

RS-232/485
Transceiver

Z16C32
SCC

Z16C32
SCC

Z16C32
SCC

Z16C32
SCC

FPGA

D
B

-6
2

 C
o

n
n

e
ct

o
r

32
-b

it
 6

6
M

H
z

P
o

w
er

D
N

A
 B

u
s

16 MB
SRAM

P0

P1

P2

P3

Optical Isolation Boundary
May 2020 www.ueidaq.com
508.921.4600

© Copyright 2020
United Electronic Industries, Inc.

DNx-SL-504 Synchronous Serial Line Communication Board
Chapter 1 12

Introduction
1.7.1 RS-232/485
Transceiver

The DB-62 input/output traces are directly connected to four software-controlled
EXAR SP506 single chip multi-mode serial line transceivers, one per channel,
that select the type of DTE to DCE connectivity used in the actual physical
signaling.

Each SP506 transceiver provides the following software enabled features,
programmable for each SL-504 port:

• Internal loop-back, which eliminates the need for external loopback
hardware. In loopback mode, driver outputs are internally connected to
receiver inputs, creating an internal path for diagnostic testing.

• Physical interfaces (RS-232, RS-422, and RS-485 support).

• On-chip termination resistance, which can be enabled in RS-422 and
RS-485 modes.

Signals pass between the SP506 transceiver and the Zilog Z16C32 serial
communication control chip through optical isolation circuitry.

1.7.2 Universal
Serial
Controller

The Z16C32 Integrated Universal Serial Controller is a software-configurable
multi-protocol data communications controller with on-chip dual-channel DMA.
The serial controller offers many functions in an integrated design, rather than
separate components, such as two baud rate generators (BSG0 and BSG1), a
digital phase-locked loop, character counters, and 32-byte FIFOs for both
receiver and transmitter.

The serial controller handles synchronous bit-oriented formats, such as HDLC,
and supports virtually any serial data transfer application.

The serial controller can generate and check CRC in any synchronous mode.
Direct access to the CRC value allows user software to resend or manipulate the
CRC as needed. The Zilog document UM014001-1002 provides additional
information on the Z16C32.

The SP506 and Z16C32 are managed by a SL-504-specific logic module that
works alongside the Core module logic found in all DNx products.

1.8 Wiring &
Connectors
(pinout)

Figure 1-8 shows the pinout of the 62-pin female D-Sub connector for the SL-
504. The connector is divided into four 9-pin serial ports, as shown in the pinout.

Users can connect to the DB-62 connector either through a custom made cable
or by connecting to a DNx-STP-62 accessory panel (see Appendix, page 31).

The following nomenclature is used for pin signals:

Name RS-232 -/+ RS-422/485 Description

TxD single-ended (a) differential (a,b) Transmit Data (output)

RxD single-ended (a) differential (a,b) Receive Data (input)

CTS single-ended (a) differential (a,b) Clear-to-send (input)

DCD single-ended (a) differential (a,b) Data Carrier Detect (input)

TxC single-ended (a) differential (a,b) Transmit Clock (output)

RxC single-ended (a) differential (a,b) Receive Clock (input)

GND single-ended single-ended Common Ground Reference/Port

Table 1-3 . Abbreviations for pinout: (a) inverted, (b) non-inverted
May 2020 www.ueidaq.com
508.921.4600

© Copyright 2020
United Electronic Industries, Inc.

DNx-SL-504 Synchronous Serial Line Communication Board
Chapter 1 13

Introduction
For RS-232 electrical interfaces, each single-ended line is compared to the
ground within the same cable that is shared between the two terminals.

For RS-422/485 two-wire twisted pairs form the a/b differential pairs:

• a is the inverting signal, sometimes labeled as -, for example TxD-
• b is the non-inverting signal, sometimes labeled as +, for example TxD+

The following pinout for the SL-504 is provided below:

Figure 1-8 DNx-SL-504 Connection Diagram

1.8.1 2-wire Wiring,
Synchronous

Figure 1-9 provides a wiring example for 2-wire SL-504-801 synchronous
communication.

Figure 1-9 Two-wire Twisted-pair Half-duplex Sync Network (SL-
504-801)

Pin signal Pin signal

Pin signal

SL-504-801 Channel 0

TxD(a) 26
TxD(b) 5

RxD(a) 25
RxD(b) 4

TxC(a) 23
TxC(b) 2

RxC(a) 43
RxC(b) 44

GND 22

1
20
Ω

12
0Ω

TxD

RxD
30 RxD(a)
 9 RxD(b)

31 TxD(a)
10 TxD(b)

28 RxC(a)
7 RxC(b)

29 TxC(a)
8 TxC(b)

 6 GND

SL-504-801 Channel 1
May 2020 www.ueidaq.com
508.921.4600

© Copyright 2020
United Electronic Industries, Inc.

DNx-SL-504 Synchronous Serial Line Communication Board
Chapter 2 14

Programming with the High-Level API
Chapter 2 Programming with the High-Level API

This chapter provides the following information about using the UeiDaq
Framework High-level API to control the DNx-SL-504:

• About the High-level Framework (Section 2.1)

• Creating a Session (Section 2.2)

• Configuring the Resource String (Section 2.3)

• Configuring the Timing (Section 2.4)

• Reading Data (Section 2.5)

• Writing Data (Section 2.6)

• Cleaning-up the Session (Section 2.7)

2.1 About the
High-level
Framework

UeiDaq Framework is object oriented and its objects can be manipulated in the
same manner from different development environments, such as Visual C++,
Visual Basic, or LabVIEW.

UeiDaq Framework is bundled with examples for supported programming
languages. Examples are located under the UEI programs group in:

• Start » Programs » UEI » Framework » Examples

The following sections focus on C++ API examples, but the concept is the same
regardless of which programming language you use.

Please refer to the “UeiDaq Framework User Manual” for more information on
use of other programming languages.

2.2 Creating a
Session

The Session object controls all operations on your PowerDNx device. Therefore,
the first task is to create a session object:

// create a session object for input, and a session object for output

CUeiSession slSession;
May 2020 www.ueidaq.com
508.921.4600

© Copyright 2020
United Electronic Industries, Inc.

DNx-SL-504 Synchronous Serial Line Communication Board
Chapter 2 15

Programming with the High-Level API
2.3 Configuring
the Resource
String

UeiDaq Framework uses resource strings to select which device, subsystem
and channels are used within a session. The resource string syntax is similar to
a web URL:

<device class>://<IP address>/<Device Id>/<Subsystem><Channel list>

For PowerDNA and RACKtangle, the device class is pdna.

For example, the following resource string selects HDLC ports 0,2,3 on device 1
at IP address 192.168.100.2: “pdna://192.168.100.2/Dev1/hdlc0,2,3”

The SL-504 is programmed using the subsystem hdlc to configure channels in
HDLC mode.

2.3.1 Configuring
the HDLC Port

Use the method CreateHDLCPort() to configure one or more channel(s) in
synchronous mode.

The following call configures ports 2 and 3 of a SL-504 set as device 1:

It configures the following parameters:

• Physical interface: the physical interface used to transmit serial bytes.
UeiHDLCPortRS232: RS-232
UeiHDLCPortRS422: RS-422
UeiHDLCPortRS485: RS-485
UeiHDLCPortV35: V35

• Bits per second: the number of bits per second transmitted of the
synchronous port

• Encoding: the method used to encode bits over synchronous serial line:
UeiHDLCPortEncodingNRZ: NRZ encoding
UeiHDLCPortEncodingNRZB: inverted NRZ encoding
UeiHDLCPortEncodingNRZI: NRZI encoding
UeiHDLCPortEncodingNRZIMark: NRZI encoding, invert state for 1
UeiHDLCPortEncodingNRZISpace: NRZI encoding, invert state for 0
UeiHDLCPortEncodingBiphaseMark: biphase encoding, with DPLL
UeiHDLCPortEncodingBiphaseSpace: biphase encoding, with DPLL
UeiHDLCPortEncodingBiphaseLevel: biphase encoding, with DPLL
UeiHDLCPortEncodingBiphaseDiff: biphase encoding, used with DPLL

• CRC: the method used to calculate the cyclic redundancy code:
UeiHDLCPortCRCNone: CRC is not checked neither for transmit nor
receive
UeiHDLCPortCRCUser: User responsible for inserting & checking CRC
UeiHDLCPortCRC16CCITT: use 16-bit CCITT CRC (x^15+x^12+x^5+1)
UeiHDLCPortCRC16: 16-bit polynomial
UeiHDLCPortCRC32:-32-bit polynomial

// Configure session’s ports

hdlcSession.CreateHDLCPort(“pdna://192.168.100.2/Dev1/hdlc2,3”,
 UeiHDLCPortRS232,
 100000,
 UeiHDLCPortEncodingNRZ,
 UeiHDLCPortCRCNone,
 UeiHDLCPortClockBRG,
 UeiHDLCPortClockExternal);
May 2020 www.ueidaq.com
508.921.4600

© Copyright 2020
United Electronic Industries, Inc.

DNx-SL-504 Synchronous Serial Line Communication Board
Chapter 2 16

Programming with the High-Level API
• TX clock source: clock source used to synchronize transmitter:
UeiHDLCPortClockExternalPin: Take clock from external RxC pin
UeiHDLCPortClockBRG: Take clock from baud rate generator
UeiHDLCPortClockDPLL: Take clock from DPLL divided by 32
UeiHDLCPortClockDPLLDiv8: Take clock from DPLL divided by 8
UeiHDLCPortClockDPLLDiv16: Take clock from DPLL divided by 16

• RX clock source: clock source used to synchronize receiver:
UeiHDLCPortClockExternalPin: Take clock from RxC pin
UeiHDLCPortClockBRG: Take clock from baud rate generator
UeiHDLCPortClockDPLL: Take clock from DPLL divided by 32
UeiHDLCPortClockDPLLDiv8: Take clock from DPLL divided by 8
UeiHDLCPortClockDPLLDiv16: Take clock from DPLL divided by 16

In addition you can set the following parameter using the channel object
methods (under LabVIEW use property node):

• Termination: Select whether to enable or disable termination resistors.
// enable termination resistor
pPort->EnableTerminationResistor(true);

• Echo suppression: Select whether to suppress echo in half duplex
mode (RS-422)
// Disable echo
pPort->EnableHDEchoSuppression(true);

• Loopback: Select whether transmitter and receiver of the same port are
tied.
// Disable loopback
pPort->EnableLoopback(false);

• Abort Symbol: The symbol used to abort
UeiHDLCPortAbort7: Send 0x7F to abort
UeiHDLCPortAbort15: Send 0x7FFF to abort
// Set abort symbol to 0x7F
pPort->SetAbortSymbol(UeiHDLCPortAbort7);

• Underrun Action: The action taken when underrun condition is
detected:
UeiHDLCPortUnderrunFinish: Close the frame by adding CRC to it
UeiHDLCPortUnderrunFlags: Send flags
// Set underrun action
pPort->SetUnderrunAction(UeiHDLCPortUnderrunFinish);

• Filter Mode: The filter setting:
UeiHDLCPortFilterNone: No filtering
UeiHDLCPortFilterA16: +16 bits into RxFIFO if Addr matches or B/C as
2 bytes
UeiHDLCPortFilterA24: +24 bits into RxFIFO if Addr matches or B/C as
3 bytes
UeiHDLCPortFilterA32: +32 bits into RxFIFO if Addr matches or B/C as
4 bytes
UeiHDLCPortFilterEALS: Places bytes while LS==0, then byte with
LS==1 then 16 bits as 2 bytes into RxFIFO if EA matches or B/C
UeiHDLCPortFilterEA24: Places 24 bits as 3 bytes into RxFIFO if EA
matches or B/C
UeiHDLCPortFilterEAMS: Places bytes while MS==0, then byte with
MS==1 then 8 bits as 1 byte into RxFIFO if Ext Addr matches or B/C
May 2020 www.ueidaq.com
508.921.4600

© Copyright 2020
United Electronic Industries, Inc.

DNx-SL-504 Synchronous Serial Line Communication Board
Chapter 2 17

Programming with the High-Level API
UeiHDLCPortFilterEAMS16: Places bytes while MS==0, then byte with
MS==1 then 16 bits as 2 bytes into RxFIFO if Ext Addr matches or B/C
// Disable filter
pPort->SetFilterMode(UeiHDLCPortFilterNone);

• Filter address: The address to filter
// Set address to filter
pPort->SetFilterAddress(0x52);

• Idle flags: The pattern to transmit when the link is idle.
UeiHDLCPortIdleFlag: continuous flags
UeiHDLCPortIdleZero: continuous zeroes
UeiHDLCPortIdleOne: continuous ones
UeiHDLCPortIdleMark: idle chars are marks
UeiHDLCPortIdleSpace: idle chars are spaces
UeiHDLCPortIdleMS: alternating Mark and Space
UeiHDLCPortIdle01: .alternating 0 and 1
// Set idle pattern
pPort->SetidleCharacter(UeiHDLCPortIdleOne);

2.4 Configuring
the Timing

The application must configure the SL-504 to use the “messaging” timing mode.

A message is represented by an array of bytes.

The SL-504 can be programmed to wait for a certain number of bytes to be
received before notifying the session.

It is also possible to program the maximum amount of time to wait for the
specified number of bytes before notifying the session.

The following sample shows how to configure the messaging I/O mode to be
notified when 10 bytes have been received or every second, whichever is less.
(Note that if the serial port receives less than 10 bytes per second, it will return
whatever number of bytes are available every second).

2.5 Reading Data Reading data from the SL-504 is done using a reader object. As there is no
multiplexing of data (contrary to what’s being done with AI, DI, or CI sessions),
you need to create one reader object per serial port to be able to read from each
port in the port list.

The following sample code shows how to create a reader object tied to port 1
and read up to 10 bytes from that HDLC port.

// configure timing of serial port

session.ConfigureTimingForMessagingIO(10, 1.0);

// Create a reader and link it to the session’s stream, port 1

reader = new CUeiHDLCReader(hdlcSession.GetDataStream(), 1);

// we’ll want to store for 10 bytes (char-sized)

uInt8 bytes[10];

// read up to 10 bytes

reader->Read(10, bytes, &numBytesRead);
May 2020 www.ueidaq.com
508.921.4600

© Copyright 2020
United Electronic Industries, Inc.

DNx-SL-504 Synchronous Serial Line Communication Board
Chapter 2 18

Programming with the High-Level API
2.6 Writing Data Writing data to the SL-504 is done using a writer object. As there is no
multiplexing of data (contrary to what’s being done with AO, DO, or CO
sessions), you need to create one writer object per serial port to be able to write
to each port in the port list.

The following sample code shows how to create a writer object tied to port 2
and send a frame of 128 bytes to the HDLC port.

2.7 Cleaning-up
the Session

The session object will clean itself up when it goes out of scope or when it is
destroyed. To reuse the object with a different set of channels or parameters,
you can manually clean up the session as follows:

// Create a writer and link it to the session’s stream, port 2

writer = new CUeiSerialWriter(session.GetDataStream(), 2);

// store 128 bytes that we want to write out

unsigned char bytes[128];
memset(bytes,0x34,128);

// write 128 byte, numBytesWritten contains number of bytes actually sent

writer->Write(128, bytes, &numBytesWritten);

// clean up the sessions

slSession.CleanUp();
May 2020 www.ueidaq.com
508.921.4600

© Copyright 2020
United Electronic Industries, Inc.

DNx-SL-504 Synchronous Serial Line Communication Board
Chapter 3 19

Programming with the Low-Level API
Chapter 3 Programming with the Low-Level API

This chapter provides the following information about programming the SL-504
using the low-level API:

• About the Low-level API (Section 3.1)

• Low-level Functions (Section 3.2)

• Low-level Programming Techniques (Section 3.3)

• HDLC/SDLC Protocol Overview (Section 3.4)

• Enabling Ports (Section 3.5)

• Setting the Configuration (Section 3.6)

• Configuring 2-wire, Half-duplex Mode (SL-504-801) (Section 3.7)

• Configuring Tx and Rx Clocking (Section 3.8)

• Sending and Receiving HDLC Frames (Section 3.9)

• Reading the Link Status (Section 3.10)

• Aborting Transmission (Section 3.11)

3.1 About the
Low-level API

The low-level API provides direct access to the DAQBIOS protocol structure and
registers in C. The low-level API is intended for speed-optimization, when
programming unconventional functionality, or when programming under Linux or
real-time operating systems.

When programming in Windows OS, however, we recommend that you use the
UeiDaq Framework high-level API (see Chapter 2). The Framework extends the
low-level API with additional functionality that makes programming easier,
faster, and less error-prone.

For additional information regarding low-level programming, refer to the
“PowerDNA API Reference Manual” located in:

• On Linux systems:
<PowerDNA-x.y.z>/docs

• On Windows systems:
Start » All Programs » UEI » PowerDNA » Documentation

3.2 Low-level
Functions

Low-level functions are described in detail in the PowerDNA API Reference
Manual. Table 3-1 provides a summary of SL-504-specific functions.

Table 3-1 Summary of Low-level API Functions for DNx-SL-504

Function Description

DqAdv504Enable Enables and disables requested channels on the SL-504

DqAdv504GetStatus Requests status and accumulated statistics from the SL-

504
May 2020 www.ueidaq.com
508.921.4600

© Copyright 2020
United Electronic Industries, Inc.

DNx-SL-504 Synchronous Serial Line Communication Board
Chapter 3 20

Programming with the Low-Level API
3.3 Low-level
Programming
Techniques

Application developers are encouraged to explore the existing source code
examples when first programming the SL-504. Sample code provided with the
installation is self-documented and serves as a good starting point.

Code examples are located in the following directories:

• For Linux: <PowerDNA-x.y.z>/src/DAQLib_Samples

• For Windows: Start » All Programs » UEI » PowerDNA » Examples

3.4 HDLC/SDLC
Protocol
Overview

The HDLC protocol was developed in 1970s to facilitate synchronous
transmission of data packets (or frames) over the RS-485 or RS-232 physical
interface. Since this is a synchronous protocol, either clock & data lines or an
encoding with an embedded clock can be used (effectively cutting bandwidth by
half for the same baud rate).

DqAdv504SetConfig Sets channel configuration parameters, such as protocol

and physical interface use, baud rate, CRC mode,

encoding type, preamble use, and more

DqAdv504SendFrame Writes a frame of HDLC data of a specified channel to the

on-board RAM (Tx). By default, sixteen 4096-byte frames

are allocated for each channel.

DqAdv504SendMultFrames Writes 1 to 16 frame(s) of HDLC data of a specified

channel to the on-board RAM (Tx). By default, sixteen

4096-byte frames are allocated for each channel.

DqAdv504RecvFrame Reads a frame of HDLC data of a specified channel from

the on-board RAM (Rx). Along with frame data, this

function also provides a frame-specific status block of

data. By default, sixteen 4096-byte frames are allocated

for each channel.

DqAdv504RecvMultFrames Reads 1 to 16 frame(s) of HDLC data of a specified

channel from the on-board RAM (Rx). Along with frame

data, this function also provides a frame-specific status

block of data. By default, sixteen 4096-byte frames are

allocated for each channel.

DqAdv504AbortTx Aborts transmissions and returns TX status.

Table 3-1 Summary of Low-level API Functions for DNx-SL-504 (Cont.)

Function Description
May 2020 www.ueidaq.com
508.921.4600

© Copyright 2020
United Electronic Industries, Inc.

DNx-SL-504 Synchronous Serial Line Communication Board
Chapter 3 21

Programming with the Low-Level API
When an HDLC transmitter is enabled, it constantly sends Idle characters on the
bus. When a transmitter needs to start transmission, it sends a Flag sequence
(0x7E). Six continuous “ones” on the bus signals to the receivers that this is a
start of the frame, where a frame is a group of sequential characters ending with
CRC for error-checking. While sending a frame, an HDLC transmitter continually
checks whether any sequence of data bits could look like a Flag to the receiver.
It does this without regard for character boundaries. Whenever the data
presented to a transmitter includes a “zero” followed by five “ones”, the
transmitter adds an extra “zero” bit after a fifth “one” bit. The receiver monitors
the serial data stream as well and removes a trailing zero for any sequence that
looks like 0111110, regardless of character boundaries.

Since the flag-matching hardware operates without regard for character
boundaries, bit oriented synchronous protocols can handle any number of bits in
length. The current implementation of the SL-504 card allows the transmission
of multiple of 8-bit character and reception of any number of bits. It limits the
maximum frame size of both receiver and transmitter to 4096 8-bit characters,
not including CRC.

3.5 Enabling
Ports

The DqAdv504Enable() function is used to enable and disable operations on
a port (channel).

The function syntax is as follows:

DqAdv504Enable(int handle, int device, int chan_mask)

where DqAdv504Enable() parameters are defined as follows:

• handle: handle the IOM received when communications are opened
with the function DqOpenIOM()

• device: board location within the chassis

• chan_mask: If the bit in the channel (port) mask (1<<port_number) is
“one”, the port is enabled. If it is zero, the port is disabled. For example,
0xF enables all ports.

3.6 Setting the
Configuration

The DqAdv504SetConfig()function is used to configure a channel:

DqAdv504SetConfig(int handle, int devn, int channel, SL504_SETCFG* config)

where the SL504_SETCFG structure elements are listed and described in
Table 3-2:
May 2020 www.ueidaq.com
508.921.4600

© Copyright 2020
United Electronic Industries, Inc.

DNx-SL-504 Synchronous Serial Line Communication Board
Chapter 3 22

Programming with the Low-Level API
Table 3-2 SL504_SETCFG Structure Elements for SL_504 Board Configuration

SL504_SETCFG

Structure Element
Description Supported #define Settings

protocol Protocol setting SL504_PROT_HDLC: HDLC and SDLC

modeflags Additional flags for mode

selections

SL504_HDLC_LOOP: <reserved>
SL504_USE_CTS: CTS pin controls transmission
SL504_USE_DCD: DCD pin enables receiver
SL504_INHIBIT_TX: Do not enable transmitter
SL504_INHIBIT_RX: Do not enable receiver
SL504_MODE_NOTXONIDLE: (504-801 only) TX
 drivers disabled in idle, for 2-wire communication

physical Physical interface setting SL504_PHY_RS232: RS-232 up to 230k baud
SL504_PHY_RS485: RS-485 up to 4Mbit
SL504_PHY_RS422: RS-422 multidrop
SL504_PHY_V35: balanced current data and clock
 and unbalanced voltage DCD and CTS

SL504_PHY_TERM: enable termination in RS-485/
 RS-422 modes
SL504_PHY_LOOP : enable internal loopback in the
 selected mode
SL504_PHY_NOECHO :suppress echo in RS-422/423
 modes (disable RX while TX is transmitting)

hdlc_flags Additional synchronous

mode flags (HLDC)

SL504_HDLC_ABORT_7: send 0x7f as an abort
 symbol (default)
SL504_HDLC_ABORT_15: send 0x7fff as an abort
 symbol

SL504_HDLC_FINISH_UNDER: in underrun
 condition close the frame by adding CRC to it
SL504_HDLC_FLAGS_UNDER: in underrun condition
 start sending flags

SL504_HDLC_SHARED_ZEROES: send idle flags with
 shared zeroes
May 2020 www.ueidaq.com
508.921.4600

© Copyright 2020
United Electronic Industries, Inc.

DNx-SL-504 Synchronous Serial Line Communication Board
Chapter 3 23

Programming with the Low-Level API
hdlc_encod HDLC encoding type SL504_HDLC_NRZ: NRZ encoding
SL504_HDLC_NRZB: inverted NRZ encoding
SL504_HDLC_NRZI: NRZI encoding
SL504_HDLC_NRZI_MARK: NRZI encoding, invert
 state for 1
SL504_HDLC_NRZI_SPACE: NRZI encoding, invert
 state for 0
SL504_HDLC_BIPHASE_MARK: biphase encoding,
 with DPLL
SL504_HDLC_BIPHASE_SPACE: biphase encoding,
 with DPLL
SL504_HDLC_BIPHASE_LEVEL: biphase encoding,
 with DPLL
SL504_HDLC_BIPHASE_DIFF: biphase encoding,
 used with DPLL

hdlc_baud RxC or TxC clock rate in

baud

N/A

hdlc_clk_src Clock source for Tx/Rx

synchronization

SL504_HDLC_FLAG_RXC_RXCPIN: RxClk from
 RxC pin (default)
SL504_HDLC_FLAG_RXC_DPLL: RxClk from DPLL
SL504_HDLC_FLAG_RXC_BRG: RxClk from BRG0

SL504_HDLC_FLAG_TXC_BRG: TxClk from BRG0
 (default)
SL504_HDLC_FLAG_TXC_DPLL: TxClk from DPLL
SL504_HDLC_FLAG_TXC_RXCPIN: TxClk from
 RxC pin

SL504_HDLC_FLAG_DPLL_DIV8: DPLL divider 8
SL504_HDLC_FLAG_DPLL_DIV16: DPLL divider 16

hdlc_crc_mode CRC error-checking

None, CRC-16/32/CCITT,

user-supplied or

automatic

SL504_HDLC_CRC_NONE: CRC is not checked,
 neither for TX or RX
SL504_HDLC_CRC_USER: User is responsible for
 inserting and checking CRC

SL504_HDLC_CRC_16_CCITT: 16-bit CCITT CRC
SL504_HDLC_CRC_16: 16-bit polynomial CRC used
SL504_HDLC_CRC_32: 32-bit Eth CRC used

Table 3-2 SL504_SETCFG Structure Elements for SL_504 Board Configuration (Cont.)

SL504_SETCFG

Structure Element
Description Supported #define Settings
May 2020 www.ueidaq.com
508.921.4600

© Copyright 2020
United Electronic Industries, Inc.

DNx-SL-504 Synchronous Serial Line Communication Board
Chapter 3 24

Programming with the Low-Level API
Refer to the PowerDNA API Reference Manual for additional configuration
descriptions for each parameter.

hdlc_flt_mode HDLC filter type, if

filtering on RX packets is

selected

SL504_HDLC_FLT_NONE: No filtering

// see PowerDNA Reference Manual for descriptions

of the following filtering options:
SL504_HDLC_FLT_A_16
SL504_HDLC_FLT_A_24
SL504_HDLC_FLT_A_32
SL504_HDLC_FLT_EA_LS
SL504_HDLC_FLT_EA_24
SL504_HDLC_FLT_EA_MS
SL504_HDLC_FLT_EA_MS16

hdlc_filter HDLC address filter value

(8 bits), if filtering is

enabled in
 hdlc_flt_mode

N/A

hdlc_preamble HDLC preamble pattern SL504_HDLC_PRMB_NONE: No preamble
SL504_HDLC_PRMB_ZERO: All zeros
SL504_HDLC_PRMB_ONE: All ones
SL504_HDLC_PRMB_FLAG: All flags
SL504_HDLC_PRMB_10: Alternating 1 and 0
SL504_HDLC_PRMB_01: Alternating 0 and 1

hdlc_prmbl_sz Size of preamble, if

preamble is selected

SL504_HDLC_PRMBSZ_16: 16-bit preamble used
SL504_HDLC_PRMBSZ_32: 32-bit preamble used
SL504_HDLC_PRMBSZ_64: 64-bit preamble used

hdlc_idle_ch HDLC idle character

representation (default

0x7E)

SL504_HDLC_IDLE_FLAG: Continuous flags (0x7E)
SL504_HDLC_IDLE_ZERO: Continuous zeros
SL504_HDLC_IDLE_ONE: Continuous ones
SL504_HDLC_IDLE_MAR: Idle chars are marks
SL504_HDLC_IDLE_SPACE: Idle chars are spaces
SL504_HDLC_IDLE_MS: Alternating mark and
 space
SL504_HDLC_IDLE_01: Alternating 0 and 1

async_baud, async_char_sz, async_start, async_stop, async_parity,
async_msglen, async_tout are also elements found in the SL504_SETCFG structure. These

elements are for Asynchronous communication, which is for UEI test/debug purposes and not currently

supported in released versions of the software.

Table 3-2 SL504_SETCFG Structure Elements for SL_504 Board Configuration (Cont.)

SL504_SETCFG

Structure Element
Description Supported #define Settings
May 2020 www.ueidaq.com
508.921.4600

© Copyright 2020
United Electronic Industries, Inc.

DNx-SL-504 Synchronous Serial Line Communication Board
Chapter 3 25

Programming with the Low-Level API
3.7 Configuring
2-wire, Half-
duplex Mode
(SL-504-801)

The SL-504-801 board version supports 2-wire, half-duplex communication.
See Figure 1-5 on page 9 for topology.

To use 2-wire, half-duplex mode, the SL-504-801 board version must be used in
conjunction with setting the SL504_MODE_NOTXONIDLE mode flag in software.
The mode flag turns off TX drivers when the transmitter is in idle and the channel
is in RS-422/485 configuration.

To enable 2-wire, half-duplex mode, the SL504_MODE_NOTXONIDLE #define
flag is OR’ed with the modeflags parameter in the pSL504_SETCFG structure.

For example, if config is a structure defined as pSL504_SETCFG config,
then flags would be or’ed as follows:

config.modeflags |= SL504_MODE_NOTXONIDLE;

The port configuration would then be updated with the
DqAdv504SetConfig() function call:

DqAdv504SetConfig(hd, DEVN, ch_tx, &config);

Where ch_tx is the port (0,1, 2 or 3) on the SL-504-801 that is configured as
2-wire, half-duplex.

Refer to Section 3.6 for more information regarding DqAdv504SetConfig().

For detailed information about all low-level API functions, refer to the PowerDNA
API Reference Manual.

3.8 Configuring
Tx and Rx
Clocking

The <hdlc_baud> and <hdlc_clk_src> parameters set in the
DqAdv504SetConfig() function are used to set up channel clocking. An
description of the DqAdv504SetConfig()function is provided in Section 3.6.

The <hdlc_baud> parameter is used to select baud rate.

The <hdlc_clk_src> parameter defines the clock source for the SL-504
receiver and transmitter:

RX/TX #define Constant Clock Source

RX SL504_HDLC_FLAG_RXC_RXCPIN RxClk from external RxC pin (default)

RX SL504_HDLC_FLAG_RXC_DPLL RxClk from DPLL

RX SL504_HDLC_FLAG_RXC_BRG RxClk from bit rate generator on serial
communication controller

TX SL504_HDLC_FLAG_TXC_BRG TxClk from bit rate generator on serial
communication controller (default)

TX SL504_HDLC_FLAG_TXC_DPLL TxClk from DPLL

TX SL504_HDLC_FLAG_TXC_RXCPIN TxClk from external RxC pin
May 2020 www.ueidaq.com
508.921.4600

© Copyright 2020
United Electronic Industries, Inc.

DNx-SL-504 Synchronous Serial Line Communication Board
Chapter 3 26

Programming with the Low-Level API
3.8.1 Clock Source
Descriptions

The SL-504 provides three main sources for transmitter and receiver clocking.

• The baud rate generator (BRG) is a part of the Zilog Z16C32 chip. It
can be programmed to generate a clock of a specific frequency derived
from the clock synthesizer chip. There are three main base clock rates
pre-selected for operations; firmware minimizes the error between the
requested and actual clock by selecting the best combination of base
clock rate and divider.

• The RxC pin is a clock input to the SL-504. The RxC pin is a standard
clock source when setting a receiver encoding mode that doesn’t use an
embedded clock, (e.g., NRZ encoding). The RxC pin can be also a clock
source for the transmit side.

• The DPLL clock is extracted from the data line transmission when
encoding with embedded clock is used (Biphase encoding).

NOTE: When using DPLL as the clock source,#define constants,
SL504_HDLC_FLAG_DPLL_DIV8 and
SL504_HDLC_FLAG_DPLL_DIV16, can be used to select a DPLL
divider lower than the standard one of 32. DPLL is used in the clocking
scheme when RxD provides data without RxC. In this case, BRG1 is
programmed as a clock source and RxC is recovered from RxD and
used as RxC and (optionally) TxC clock. DPLL mode in HCR is
dependent on the encoding used.

3.9 Sending and
Receiving
HDLC Frames

The DqAdv504SendFrame() function is used to send a single frame and the
DqAdv504RecvFrame() function is used to receive a single frame.

Both functions have similar parameters:

int DqAdv504SendFrame(int hd, int devn, int chnl, int flags, uint8 *data, int
rq_size, int *written, int *available)

int DqAdv504RecvFrame(int hd, int devn, int chnl, int flags, uint8 *data, int
rq_size, int *received, int *available, int *rsb)

• hd: handle to the IOM
• devn: position of board in the Cube or RACK
• chnl: channel to send or receive frame to/from
• flags: <reserved>
• data: data to send for TX or pointer to data to store received data for RX
• rq_size: number of bytes to write or size of the receive buffer
• written (or received): number of bytes written or received or error code
• available: number of frame entries left available
• rsb: (RX-only) frame-specfic block of RX status information
Each function writes or reads one frame at a time.

Internally, the Z16C32 is programmed to take advantage of DMA operations
between its bus and the PSRAM chip on the board. By default, sixteen 4096
byte frames are allocated for each channel, for transmit and receive separately.
The maximum number of frames is 256.
May 2020 www.ueidaq.com
508.921.4600

© Copyright 2020
United Electronic Industries, Inc.

DNx-SL-504 Synchronous Serial Line Communication Board
Chapter 3 27

Programming with the Low-Level API
On transmission, a new frame is added to the list of filled frames and the number
of empty frames is returned. The firmware stops accepting new frames when ¾
of the frames are used. At this point DqAdv504SendFrame() returns zero in
the <written> field.

Note that when the SL504_PHY_NOECHO configuration flag is used, the number
of Tx frames is limited to one. With this flag, firmware disables receiver from the
moment the frame is sent to the moment DMA informs firmware via interrupt that
the transmission is completed.

On reception, the receiver stops when all frames are filled.

3.10 Reading the
Link Status

The DqAdv504GetStatus() function is used to retrieve accumulated link
statistics:

int DqAdv504GetStatus(handle, device, int chan_mask, pSL504_INT_STAT status)

• handle: handle the IOM received when communications are opened with
the function DqOpenIOM()

• device: board location within the chassis
• chan_mask: If the bit in the channel (port) mask (1<<port_number) is “one”,

the port is enabled. If it is zero, the port is disabled. For example, 0xF enables
all ports.

• pSL504_INT_STAT stat: pointer to the structure storing status/statistical
information.

The pSL504_INT_STAT structure is defined as follows:

// Interface status
typedef struct {
 int cts; // number of CTS transitions
 int dcd; // number of DCD transitions
 int tx; // bytes transmitted
 int ftx; // frames transmitted
 int rx; // bytes received
 int frx; // frames received
 int frm_err; // frame errors
 int ovr_err; // overrun errors (Rx)
 int und_err; // underrun error (Tx)
 int prt_err; // parity errors
 int tx_abort; // Tx frame aborts
 int rx_abort; // Rx frame aborts
 int short_err; // Rx frames too short to be valid
 int long_err; // Rx frames too long (>4096) to be valid
 int lines; // current line state
 int err_stat; // most recent error status
 int brk; // number of breaks
 int exithunt; // ditto exited hunt mode
 int rxidle; // ditto idle

May 2020 www.ueidaq.com
508.921.4600

© Copyright 2020
United Electronic Industries, Inc.

DNx-SL-504 Synchronous Serial Line Communication Board
Chapter 3 28

Programming with the Low-Level API
 // there are a few important registers to return for debug purposes
 uint16 tdmr; // Transmit DMA status register (see Table 3-3)
 uint16 rdmr; // Receive DMA status register (see Table 3-4)
 uint16 ccsr; // Channel command/status register (see Table 3-5)
 uint16 tcsr; // Transmit command/status register (see Table 3-6)
 uint16 rcsr; // Receive command/status register

} SL504_INT_STAT, *pSL504_INT_STAT;

Most fields are either collected when Z16C32 receives or sends frames or read
directly from the chip registers.

The following status bits are useful in the Transmit DMA Register:

The following status bits are useful in Receive DMA Register:

Bit Name Description of TDMR bit

7 Cont

Firmware has issued a Start/Continue command

after loading next buffer address

6 GLink

The channel DMA is reading next address in the

linked list

5 BUSY

The channel is operating, DMA waits to send/

continues to send data to the transmitter

4 INITG

The channel DMA is fetching information from

the linked list or stopped while doing so

3 EOL

The channel DMA has reached the end of the

linked list, there is no more data to transfer

2 EOB

The channel DMA has finished sending current

frame data

1 HAbort

The channel stopped due to the firmware issued

Abort

0 SAbort The channel stopped due to the Abort command

Table 3-3 Transmit DMA Register

Bit Name Description of RDMR bit

7 Cont

Firmware has issued a Start/Continue command

after loading next buffer address

6 GLink

The channel DMA is reading next address in the

linked list

5 BUSY

The channel is operating, DMA waits to receive/

continues to receive data from the receiver

Table 3-4 Receive DMA Register
May 2020 www.ueidaq.com
508.921.4600

© Copyright 2020
United Electronic Industries, Inc.

DNx-SL-504 Synchronous Serial Line Communication Board
Chapter 3 29

Programming with the Low-Level API
The following status bits are useful in Channel Command/Status Register:

The following status bits are useful in the Transmit Command/Status Register:

4 INITG

The channel DMA is fetching information from

the linked list or stopped while doing so

3 EOL

The channel DMA has reached the end of the

linked list, there are no more buffers to store data

2 EOB

The channel DMA has finished receiving current

frame data or frame is too long and the end of

buffer is reached

1 HAbort

The channel stopped due to the firmware issued

Abort

0 SAbort The channel stopped due to the Abort command

Bit Name Description of CCSR bit

15 RCCF Overflow

RCC FIFO Overflow (should not occur if DMA is

working properly and frames are read on time)

14 RCCF Avail

RCC FIFO has data (DMA takes care of

emptying the FIFO)

12 DPLL Sync

DPLL is in sync with the input clock embedded in

RxD

11 DPLL 2Miss DPLL has seen two consecutive missing clocks

10 DPLL 1Miss DPLL has seen a missing clock

Table 3-5 Channel Command/Status Register

Bit Name Description of TCSR bit

7 PreSent Transmitter has finished sending preamble

6 IdleSent Transmitter has sent idle condition

5 AbortSent Transmitter has sent Abort

4 EOF Transmitter has sent end-of-frame

3 CRCSent Transmitter has sent CRC code

2 AllSent Last frame bit has gone out of transmitter

1 TxUnder

Transmitter has encountered underrun condition

(starts sending idle character by default)

0 TxEmpty TxFIFO is empty

Table 3-6 Transmit Command/Status Register

Bit Name Description of RDMR bit

Table 3-4 Receive DMA Register (Cont.)
May 2020 www.ueidaq.com
508.921.4600

© Copyright 2020
United Electronic Industries, Inc.

DNx-SL-504 Synchronous Serial Line Communication Board
Chapter 3 30

Programming with the Low-Level API
3.11 Aborting
Transmission

The DqAdv504AbortTx() function is used to abort an HDLC frame
transmission:

int DqAdv504AbortTx(int hd, int devn, int channel, uint32* status)

• hd: handle the IOM received when communications are opened with the
function DqOpenIOM()

• devn: board location within the chassis
• channel: Tx channel number aborting
• status: transmit status/current value of TCSR register (see Table 3-6)

This function issues abort commands to the transmitter and clears all frames of
the existing data. The status returned is the content of Z16C32 TCSR register.
May 2020 www.ueidaq.com
508.921.4600

© Copyright 2020
United Electronic Industries, Inc.

DNx-SL-504 Synchronous Serial Line Communication Board
Appendix A 31

May 2020 www.ueidaq.com
508.921.4600

© Copyright 2020
United Electronic Industries, Inc.

Appendix A

A.1 Accessories The following cables and STP boards are available for the SL-504 board.

DNA-CBL-62

This is a 62-conductor round shielded cable with 62-pin male D-sub connectors
on both ends. It is made with round, heavy-shielded cable; 2.5 ft (75 cm) long,
weight of 9.49 ounces or 269 grams; up to 10ft (305cm) and 20ft (610cm).

DNA-STP-62

The STP-62 is a Screw Terminal Panel with three 20-position terminal blocks
(JT1, JT2, and JT3) plus one 3-position terminal block (J2). The dimensions of
the STP-62 board are 4w x 3.8d x1.2h inch or 10.2 x 9.7 x 3 cm (with standoffs).
The weight of the STP-62 board is 3.89 ounces or 110 grams.

Figure A-1 Pinout and Photo of DNA-STP-62 Screw Terminal Panel

62 42 21
61 41 20
60 40 19
59 39 18
58 38 17
57 37 16
56 36 15
55 35 14
54 34 13
53 33 12
52 32 11
51 31 10
50 30 9
49 29 8
48 28 7
47 27 6
46 26 5
45 25 4
44 24 3
43 23 2

22 1

SHIELD

DB-62 (female)
62-pin connector:

to J2 to JT1 to JT2 to JT3

JT3 — 20-position
terminal block:

44

4

47

GND

JT2 — 20-position
terminal block:

7

JT1 — 20-position
terminal block:

J2 — 5-position
terminal block:

5
4
3
2
1

Tel: 508-921-4600 www.ueidaq.com Vers: 4.5
Date: 05. 21. 2020 DNx-SL-504-ManualIX.fm

© Copyright 2020
United Electronic Industries, Inc.

May 2020 www.ueidaq.com
508.921.4600

© Copyright 2020
United Electronic Industries, Inc.

DNx-SL-504 Synchronous Serial Line Communication Board
 Index 32

Index
B
Block diagram 11

C
Cable(s) 31
Cleaning-up the Session 18
Cleaning-up the session 18
Configuring the Resource String 14
Conventions 2
Creating a Session 14

H
High Level API 14

I
Isolation 3

L
Low-level API 19

O
Organization 1

S
Screw Terminal Panels 31
Setting Operating Parameters 5
Support ii

	DNx-SL-504/ DNx-SL-504-801 — User Manual
	Table of Contents
	List of Figures
	Chapter 1 Introduction
	1.1 Organization of Manual
	1.2 SL-504 Interface Board Overview
	1.2.1 Standards and Protocols
	1.2.2 Baud Rates & Bit Configuration
	1.2.3 Network Topologies
	1.2.4 Electrical & Environmental Specifications
	1.2.5 Software Support

	1.3 Features
	1.4 Indicators
	1.5 Specification
	1.6 Serial Communication
	1.6.1 Standards and Protocols
	1.6.2 The Physical Interface
	1.6.3 HDLC/SDLC Data-link Protocols

	1.7 Architecture
	1.7.1 RS-232/485 Transceiver
	1.7.2 Universal Serial Controller

	1.8 Wiring & Connectors (pinout)
	1.8.1 2-wire Wiring, Synchronous

	Chapter 2 Programming with the High-Level API
	2.1 About the High-level Framework
	2.2 Creating a Session
	2.3 Configuring the Resource String
	2.3.1 Configuring the HDLC Port

	2.4 Configuring the Timing
	2.5 Reading Data
	2.6 Writing Data
	2.7 Cleaning-up the Session

	Chapter 3 Programming with the Low-Level API
	3.1 About the Low-level API
	3.2 Low-level Functions
	3.3 Low-level Programming Techniques
	3.4 HDLC/SDLC Protocol Overview
	3.5 Enabling Ports
	3.6 Setting the Configuration
	3.7 Configuring 2-wire, Half- duplex Mode (SL-504-801)
	3.8 Configuring Tx and Rx Clocking
	3.8.1 Clock Source Descriptions

	3.9 Sending and Receiving HDLC Frames
	3.10 Reading the Link Status
	3.11 Aborting Transmission

	Appendix A
	Index

